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© Object Oriented Design
o To describe the activities in the object-oriented design process
o To introduce various UML models that can be used to describe
an object-oriented design
e To show how to use OCL to guarantee the models’ constraints
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o How to express behavioral properties (LTL)
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© Object Oriented Design

o To describe the activities in the object-oriented design process

e To introduce various UML models that can be used to describe

an object-oriented design

e To show how to use OCL to guarantee the models’ constraints
© Formal Modeling and Verification

o How to model a concurrent system (using Petri nets)

o How to express behavioral properties (LTL)

o How to check a property on a system

© Test

o Test of Object Oriented applications
o Unit, Integration and Validation Test
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o 14h lecture (CM)
@ 10h30 Tutorials (TP)
@ 10h30 Tutorials (Project)

o Evaluation :

e 1 exam (DE) (66.66%)
e a project (33.33%)
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@ Context
© Model Checking
© Formalisms and Notations

@ Formal Specifications
@ Petri nets
o Coverability Graph
@ Linear Temporal Logic (LTL)

© LTL Model Checking

@ Biichi Automata
@ Automata-Theoretic Explicit LTL Model Checking
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Outline

@ Context

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 6 /113



Context

System ¢ » Property
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Some Properties

@ Reachability: A certain situation can be reached
x may be zero, each instruction can be executed

@ Invariant: Each state respects some good property
x is never equal to zero, an array never overflows

@ Safety: Something bad can never happen
| access the file if | enter the correct PIN

@ Liveness: Something good can always happen
the program terminate, the message will eventually arrive to the
destination, the program always returns to the initial state

@ Fairness: Something good happens infinitely often
If a process asks to enter to a critical section infinitely often, it
will access it infinitely often
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Context

System ¢ » Property
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Context

Test
System ¢ » Property
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Context

Test
System ¢ » Property

Not exhaustive
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Context

System Property
Modelling Specification
% W
System Property
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Context

System

Modelling

v

System

Property
Specification
A 2
Formal
<& > Property
Verification
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Formal Verification

© Theorem Proving

o Logical description of the system
o Prove properties by deduction
o Not fully automatic
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Formal Verification

© Theorem Proving
o Logical description of the system
o Prove properties by deduction
o Not fully automatic
© Model Checking
o Exhaustive verification
o Fully automatic
o Counter-examples
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Example: Mutual Exclusion Algorithm

Global variables: regp and reqq

Process P
1. regp <1
2. wait(reqg =0)
3. Critical Section
4. regp <0

Process Q

1.

2.
3.
4

reqg <+ 1
wait(regp = 0)
Critical Section
reqg <+ 0

Initial state: reqp = reqg = 0
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Example: Mutual Exclusion Algorithm

Global variables: regp and reqq

Process P
1. regp <1
2. wait(reqg =0)
3. Critical Section
4. regp <0

Process Q

1.

2.
3.
4

reqg <+ 1
wait(regp = 0)
Critical Section
reqg <+ 0

Initial state: reqp = reqg = 0

Properties to be checked:
© Mutual exclusion

© Fairness

© Order
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Example: Reachability State Space

P=1reqp =0

Q=1,reqqg =0
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Example: Reachability State Space

P=1,reqgp =0
Q:l,rqu:O

/

P=2reqp=1

Q:l,rqu:O

P=3,reqgp =1
Q=1reqq =0

P=4,reqgp =1

Q=1reqq =0
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Example: Reachability State Space

/

P=1,reqp =0

Q=1,reqqp=0

P=1,reqp =0
Q=2,reqq =1

P=1,reqp =0
Q=3,reqq =1

P=1,reqp =0
Q=4,reqq =1

/

P=2reqp=1
Q=1,reqq =0

P=3,reqp =1
Q:l,rqu:O

\

P=4,reqp =1

Q=1,reqq=0
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EFREI 16-17

Example: Reachability State Space

/

P=1,reqp =0

Q=1reqq =0

P=1reqp =0

Q:2,rqu:1

P=1,reqp =0
Q=3,reqq =1

P=1,reqp =0
Q=4,reqq =1

/

<

P=2regp=1
Q=1,reqq =0

P=2reqp=1
Q=2,reqq=1

P=2reqp=1
Q=3,reqq =1

P=3,reqp =1
Q=1reqq =0

P=3,reqgp =1
Q=2reqqg =1

\

/

P=4reqgp =1

Q=1reqq =0

P=4reqp=1

Q=2,reqq =1
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Property 1: Mutual Exclusion
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Property 1: Mutual Exclusion

We never have P=3AQ =3

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 20 / 113



Property 1: Mutual Exclusion

We never have P=3AQ =3

That's true
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Property 1: Mutual Exclusion

We never have P=3/AQ =3

That's true

To check this property we browse the set of reachable states. We
need reachable states only, not the transitions between states.
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Property 2: Fairness
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Property 2: Fairness

Each path starting at a state where P = 2 traverses a state where
P = 3, and the same for Q
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Property 2: Fairness

Each path starting at a state where P = 2 traverses a state where
P = 3, and the same for Q

That's false: State (P =2, regp =1, Q =2, ,reqg = 1) has no
successor
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Property 2: Fairness

Each path starting at a state where P = 2 traverses a state where
P = 3, and the same for Q

That's false: State (P =2, regp =1, Q =2, ,reqg = 1) has no
successor

To check this property we browse the reachability graph (having the
reachable states only is not sufficient).
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Property 3: Order
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Property 3: Order

Each path starting at a state where P =2 A Q@ = 1 do not visit a
state satisfying @ = 3 before visiting a state where P =3
(4+ a symmetric property for Q).
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Property 3: Order

Each path starting at a state where P =2 A Q@ = 1 do not visit a
state satisfying @ = 3 before visiting a state where P =3
(4+ a symmetric property for Q).

That's false: Starting from (P =2, regp =1, Q =1, reqq = 0),
there exists a path where P = 3 is never satisfied.
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Property 3: Order

Each path starting at a state where P =2 A Q@ = 1 do not visit a
state satisfying @ = 3 before visiting a state where P =3
(4+ a symmetric property for Q).

That's false: Starting from (P =2, regp =1, Q =1, reqq = 0),
there exists a path where P = 3 is never satisfied.

To check this property we browse the reachability graph (having the
reachable states only is not sufficient).
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Outline

© Model Checking
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Model checking of finite state systems

Principle
@ Design the system with a model M and design a property ¢
Q@ M E 7 if no, a counter-example o

© Analyse the result:

o If yes, OK
e If no, refine M using o and go to (1).
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Model checking of finite state systems

Principle
@ Design the system with a model M and design a property ¢
Q@ M E 7 if no, a counter-example o

© Analyse the result:

o If yes, OK
e If no, refine M using o and go to (1).

Approach

o State space traversal (Labeled Transition System)
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Example

Is there any safe path?
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Example

YES
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Example

Are all the paths safe?
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Example

NO
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Formal Specifications

© The System
Systems are formally expressed using:
o State Machines
o Automata
o Petri Nets
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Formal Specifications

© The System
Systems are formally expressed using:
o State Machines
o Automata
o Petri Nets
© The properties
Properties are formally expressed using temporal logics
o Linear Temporal Logic (LTL)
o Tree Computational Logic (CTL)
o CTL*
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Formal Specifications

© The System
Systems are formally expressed using:

o State Machines
o Automata
o Petri Nets

© The properties
Properties are formally expressed using temporal logics

o Linear Temporal Logic (LTL)
o Tree Computational Logic (CTL)
o CTL*

Advantages:
@ unambiguous
@ generic

o allows for automatic verification
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Example

Let's be serious 5 minutes

b g

o A: for all paths

o [ there exists a path
o (: always

o g: Gargamel

@ 1 negation

g

The formula £EG —g is satisfied by the model
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Model Checking

Ingredients
e /M = The behavior of the System
e . — a temporal formula

o VIC = M ¢?
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Model Checking

Ingredients
e /M = The behavior of the System
e . — a temporal formula

o VIC = M ¢?
Advantages
@ During specification/design time
@ Automatic
o Global w.r.t. Test
o Efficient (in some fields)
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Model Checking

Ingredients
e /1 — The behavior of the System
e . — a temporal formula

o VIC = M ¢?
Advantages

@ During specification/design time

@ Automatic

o Global w.r.t. Test

o Efficient (in some fields)
Drawbacks

o Finite LTSs

@ Requires formal expertise

o State space explosion problem
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State space explosion problem

Reduction Techniques

@ On-the-fly construction

e Stop the exploration as soon as a counter-example is
found
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State space explosion problem

Reduction Techniques

@ On-the-fly construction

e Stop the exploration as soon as a counter-example is
found

o Partial order reduction
o Exploits the independence between actions

o Stuttering equivalence
o stutter-invariant formula

° aé.aé.al}.alg.ab.ab. ..
o ab.ab.ab.ab.ab.ab.ab. . ..

o Modularity

e Symbolic representations (e.g., BDDs)
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State space explosion problem

Reduction Techniques

o On-the-fly construction \/

e Stop the exploration as soon as a counter-example is
found

o Partial order reduction
o Exploits the independence between actions

o Stuttering equivalence \/
o stutter-invariant formula

° aé.aé.al}.alg.ab.ab. ..
o ab.ab.ab.ab.ab.ab.ab. . ..

o Modularity \/
e Symbolic representations (e.g., BDDs) \/
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Outline

© Formalisms and Notations
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State Machines

Syntactical Representation of a System

S=(CV,AT)
@ C: Control States
@ V: Variables
@ A: Actions on V
@ T: Transitions
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State Machines

Syntactical Representation of a System

S=(CV,AT)
@ C: Control States
@ V: Variables
@ A: Actions on V
@ T: Transitions

serving

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 34 /113
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Labeled Transition System (LTS)

LTS = Semantics of the system

S=(Q,T,—)
@ Q: set of states (control
state,valeriable's values)
@ T: set of transitions
o -C R@xTxQ: the
transition relation

@ we can add an initial state /
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Labeled Transition System (LTS)

LTS = Semantics of the system

S=(Q,T,—)

@ Q: set of states (control
state,valeriable's values)

@ T: set of transitions

o -C R@xTxQ: the
transition relation

@ we can add an initial state /

Q represents the possible states of the system
a transition t can be executed at state a leading to state ¢’ is

(9,t,q") €= (denoted by —"¢')
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Executions of the system

idle,2,false

money
- idle,1,false

( O f)’my( 1f-)money( 2 f)chon:e(s 0 t)

@ money, money, choice, served, back, money

L(S) = Language of S= The set of executions of S ]
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Concurrency

Asynchronous product |
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Concurrency

Asynchronous product )
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Concurrency

Synchronous product |
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Concurrency

Synchronous product )
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Kripke structure
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Kripke stru

EFREI 1

money
xdle, 1,false

‘

idle,0, false

money
idle,2,false

rmal Specification and Ver
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Exercice: The Lift Example

The lift controller system (for 3 floors) is defined by:
o the controller saves in memory the current and the target floors.

9 in active mode, when the target floor is reached, the doors are opened and the controller
switches to the idle mode.

e in active, when the target floor is greater than the current one, the controller raises the
lift.

0 in active, when the target floor is lower than the current one, the controller lowers the lift.

@ in the idle mode, it may be that someone enters the lift and choose a new target floor.
The elevator then closes the doors and becomes active.

e initially, the elevator is at floor 0 and in the idle mode.
Questions

@ Design the system using a state machine (formal definition and the figure).

e Define and draw the corresponding transition system.
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The Lift Example

State Machine

@ V= courant: int[0...2], cible: int[0...2], open: bool
@ random.in € [0...2]

choice
true -> cible:=random_int up
open:=false courant < cible -> courant++
ok ‘
courant == cible -> open := true down

courant > cible -> courant--

EFREI 1
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The Lift Example

Labeled Transition System

idle, true, 0,0
choice

active, false, 0, 2

choice

active, false, 0, 1

active,false,0,0

active, false, 1,2

active, false, 1,1

active, false, 2,2

idle, true, 1,1

down idle, true, 2,2

choice

down
choice
ﬁ‘:{b active, faise, 2, 1

down

choice

choice
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Outline

@ Formal Specifications
@ Petri nets
o Coverability Graph
@ Linear Temporal Logic (LTL)
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@ Formal Specifications
@ Petri nets
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Petri Nets [Petri 73]

Syntax
A Petri net is 5-tuple N = (P, T, F, W, mg) where:

@ P is a finite set of places (cercles) and T a finite set of
transitions (squares) with (PU T) # @ and PN T = 0,

o A flow relation F C (P x T)U (T x P),
o W:F — N7 assigns a weight (> 0)to any arc.

@ An initial marking my where a marking m is a mapping
m: P — N.
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Petri Nets [Petri 73]

Syntax

Definition

A Petri net is 5-tuple N = (P, T, F, W, mg) where:
@ P is a finite set of places (cercles) and T a finite set of
transitions (squares) with (PU T) # @ and PN T = 0,

o A flow relation F C (P x T)U (T x P),

o W:F — N7 assigns a weight (> 0)to any arc.

@ An initial marking my where a marking m is a mapping
m: P — N.

Incidence matrix C: V(p,t) € P x T : C(p,t) = W(t,p) — W(p,t)
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Petri Nets [Petri 73]

Syntax

Definition

A Petri net is 5-tuple N = (P, T, F, W, mg) where:
@ P is a finite set of places (cercles) and T a finite set of
transitions (squares) with (PU T) # @ and PN T = 0,

o A flow relation F C (P x T)U (T x P),
o W:F — N7 assigns a weight (> 0)to any arc.

@ An initial marking my where a marking m is a mapping
m: P — N.

Incidence matrix C: V(p,t) € P x T : C(p,t) = W(t,p) — W(p,t)
Notation: C(p,t) = Post(t,p) — Pre(t,p))
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Petri Nets: an example

t ty
PI P2 Ps P4
o . -1 0 1 0 0 0
3 5 1 -1 0 0 0 0
0 1 -1 0 0 0
p7 0o 0 0 -1 0 1
P3 Po

0 0 0 1 -1 0
3 0o 0 0 0 1 -1
t3 t6 0 -1 1 0 -3 3

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 46 / 113



Petri Nets: Semantics

o Fireability of a transition
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Petri Nets: Semantics

o Fireability of a transition
o tis fireable at a marking m iff Vp, W(p, t) < m(p)
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Petri Nets: Semantics

o Fireability of a transition
o tis fireable at a marking m iff Vp, W(p, t) < m(p)

Ki ﬁ
or

not firable
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Petri Nets: Semantics

o Fireability of a transition
o tis fireable at a marking m iff Vp, W(p, t) < m(p)

P1 b2 p3 Pi p2 p3
@\ 2/@ @\ iz 3
t; 4
4 4

not firable firable
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Petri Nets: Semantics

@ Firing a transition
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Petri Nets: Semantics

@ Firing a transition

o The firing of a (fireable) transition t from a marking m leads to
m' =m— W(p,t)+ W(t,p)
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Petri Nets: Semantics

@ Firing a transition

o The firing of a (fireable) transition t from a marking m leads to
m' =m— W(p,t)+ W(t,p)

pi p2 p3

t

4
@P4
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Petri Nets: Semantics

@ Firing a transition

o The firing of a (fireable) transition t from a marking m leads to
m' =m— W(p,t)+ W(t,p)

% @\;f

or o

=,
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Petri Nets: Expression Power

o Causality
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Petri Nets: Expression Power

e Conflict/Choice
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Petri Nets: Expression Power

e Conflict/Choice

P1
ty ) 3
p2 P3 P4

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 50 / 113



Petri Nets: Expression Power

e Conflict/Choice
P1
9] ty 3 m
PZI p3 P4z z
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Petri Nets: Expression Power

o Parallelism
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Petri Nets: Expression Power

o Parallelism

P1 P2 P3
t 6] 3
P4 Ps Pe
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Petri Nets: Expression Power

o Parallelism

p1 p2 p3 P1 p2
ty t t3 ty 1) t3
P4 ps Pe pP3 P4 Ps
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Petri Nets: Expression Power

@ Synchronization
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Petri Nets: exercice 1

O T30

b -0

—T

e Give the Pre, Post and the incidence matrices of this Petri net.

e Which are the fireable transitions from the initial marking?
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Petri Nets: exercice 2

2
5

.

-

6
\D ;
T3

0 Is Ty fireable from the initial marking? If yes, which is the reachable marking?
@ Give the incidence matrix of this Petri net.

e Check formally the fireability of the transition Ty. If Ty is fireable, then compute the
reachable marking formally.

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 54 / 113



Petri Nets: Semantics (Cont.)

@ o=t...t, € T is fireable at my (denoted by my—Zs iff
Imy...m, st. mp-ymyi—s ... oum,
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Petri Nets: Semantics (Cont.)

@ o=t...t, € T is fireable at my (denoted by my—Zs iff
Imy...m, st. mp-ymyi—s ... oum,
o L(N,mo) ={c e T | my-s}

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 55 / 113



Petri Nets: Semantics (Cont.)

@ o=t...t, € T is fireable at my (denoted by my—Zs iff
Imy...m, st. mp-ymyi—s ... oum,
o L(N,mo) ={c e T | my-s}

o R(N, m) = the set markings reachable from a marking m of N
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Petri Nets: Semantics (Cont.)

@ o=t...t, € T is fireable at my (denoted by my—Zs iff
Imy...m, st. mp-ymyi—s ... oum,

o L(N,mg) ={oce T | m-Zs}

o R(N, m) = the set markings reachable from a marking m of N

o the reachability graph is a LTS (S, A, —, s0) s.t.

e S= R(N, mo)

o A=T

@ Sp = Mo

° (51, t,52) e— iff 51i>52
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Petri Nets: Reachability Graph

pl 2 tl p2 t2
t3
p3

initial marking (3,0, 0), then (0, 1,0)
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Petri Nets: Reachability Graph

t4 > 2

Goo—1—» (o) Con (@190 (001
t3 t3

my = (3, 0, O) my = (Oa 17 0)
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Petri Nets: Reachability Graph
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Petri Nets: Reachability Graph
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Example: Mutual Exclusion Algorithm

Global variables: regp and reqq

Process P
1. regp <1
2. wait(reqg =0)
3. Critical Section
4. regp <0

Process Q

1.

2.
3.
4

reqg <+ 1
wait(regp = 0)
Critical Section
reqg <+ 0

Initial state: reqp = reqg = 0
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Example: Mutual Exclusion Algorithm

Global variables: regp and reqq

Process P
1. regp <1
2. wait(reqg =0)
3. Critical Section
4. regp <0

Process Q

1.

2.
3.
4

reqg <+ 1
wait(regp = 0)
Critical Section
reqg <+ 0

Initial state: reqp = reqg = 0

Properties to be checked:
© Mutual exclusion

© Fairness

© Order

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 60 / 113



Example: Mutual Exclusion Algorithm

p1 p rq q1
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Example: Mutual Exclusion Algorithm

mo=p1+rp+rqg+aq
my =p2+rqg+q1

my =p3+rqg+aq

m3 = p3 + q2

mg = p3 + q2

ms = p1+rp+q2

me = p1+rp+ g3

m7 = p2 + q2
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Example: Mutual Exclusion Algorithm

mo=p1+rp+rqg+aq
my =p2+rqg+q1

my =p3+rqg+aq

m3 = p3 + q2

mg = p3 + q2

ms = p1+rp+q2

me = p1+rp+ g3

m7 = p2 + q2

my ——> m3

tq1

Compare with the previous reachability graph of the mutual exclusion example
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Petri Nets modeling a hairdresser
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Petri Nets modeling a hairdresser

to P1
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Petri Nets modeling a hairdresser (Cont.)
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Petri Nets: Properties

@ A marking m* is a home state if and only if YVm € R(N, mg), m* € R(N, m).
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Petri Nets: Properties

A marking m* is a home state if and only if Ym € R(N, mg), m* € R(N, m).

N is reversible iff mg is a home state.

N is bounded iff Vp € P: 3k € Ns.t. Vm € R(N, mg), m(p) < k.

N is structurally bounded iff N is bounded for all initial marking mg.

N is quasi-live iff Vt € T : 3M € R(N, mg) for which t is enabled.

N is deadlock-free (weakly live) iff YM € R(N, mg), 3t € T enabled in M.
N is live iff Vt € T : Vm € R(N, mo)3m’ € R(N, m) for which t is enabled.

N is structurally live iff Vmo, (N, mg) is live.

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 65 / 113



Relation Between Properties

@ quasi-liveness VS Liveness 77
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Relation Between Properties

@ quasi-liveness VS Liveness 77
@ quasi-liveness VS weak liveness 77
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Relation Between Properties

@ quasi-liveness VS Liveness 77
@ quasi-liveness VS weak liveness 77

o liveness VS weak liveness 77
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Relation Between Properties

@ quasi-liveness VS Liveness 77
@ quasi-liveness VS weak liveness 77
@ liveness VS weak liveness 77

@ mo home state and quasi live = live 77 (if yes, proof)
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@ Formal Specifications

o Coverability Graph
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p1

p2
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o Notations:
e new symbol w ¢ N s.t.
o w+tn=w

o w—n=w
@ w>n
o w<w

o N, =NU{w}

o For g e NJJ, g Y(w) = {p € P|q(p) =w}

Definition (Coverability Tree)

The coverability tree of a marked Petri net (N, mg) is a tree
(S, X) where:

o nodes of S are labeled with vectors in N7 (m =|| P ||)

o edges of X are labeled with transitions in T.
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Coverability Tree: Algorithm

@ Label the initial marking mg as the root and tag it "new".
© While "new" markings exists, do the following:

@ Select a new marking m and remove the "new" tag.
@ If mis identical to a marking on the path from the root to m,
then tag m "old" and go to another new marking.
© If no transitions are enabled at m, tag m "dead-end".
@ While there exist enabled transitions at m, do the following for
each enabled transition t at m:
@ Obtain the marking m’ that results from firing t at m.
@ |If, on the path from the root to m, there exists a marking
m' # m’ such that m" > m”, then replace m'(p) w for each p
such that m’(p) > m”(p).
© Introduce m’ as a node, draw an arc with label t from m to n’,
and tag m’ "new".

© Output the tree

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 70 / 113



Coverability Tree: Example

o1 (o)
()
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Coverability Tree: Example

p1
()

4] [p1] [p1,p2"] [p1,p2"]

@ @
0 E> ),. t1 t1
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Coverability Tree: Another Example
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Coverability Tree: Another Example

[p1,p3] [p1,02",p3]  [p1,p2“,p3]

[P1,p2%,p3,p4]

[p1,p2",p3,p4"]
[p1,p2",p3,p4"]

[p1,p2",p3,p4"]

[
JONI® <

[p1,p2",p3,p4"]

[p1,p2",p3,p4"]
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Coverability Graph

Take the coverability tree and merge nodes with identical labels
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Coverability Graph

Take the coverability tree and merge nodes with identical labels
[p1] [p1,p2°] [p1.p2"]
)’ TNd JEmTae

[p1.p3] [p1.p2°p3]  [p1,p2°p3]

[p1,p2°,p3,p4"]
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Coverability Graph

Take the coverability tree and merge nodes with identical labels

[p1] [p1,p2] [p1,p24] [p1] [p1,p2"]
N e t1
e o e

[p1.p3] [p1.p2°p3]  [p1,p2°p3]

[p1,p3] [p1,p2°,p3]
t1

t2 t2

X A
N ,
4 w
. [P1.p3,p4 ]VT»
[p1,2°,p3,p4"] t2 t2
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Coverability Graph: Another Example

Pl (11(2 X(1,0) ‘(1,0)
1.1 —2 (©0,0) i“ o l“
v

p2

B
s_‘
-\ N
=\

—

S

i

=

—_
=
€
<

—~

=

marked net reachability coverability coverability
graph tree graph
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@ The coverability tree/graph is always finite.

@ The marked Petri net is bounded if and only if the corresponding
coverability tree/graph contains only w-free markings.

@ The coverability tree/graph gives an over-approximation.

o Different Petri nets may have the same coverability tree/graph.

@ Any firing sequence of the marked Petri net can be matched by
a "walk" through the coverability graph.
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Limitation: Loss of Information

The reverse is not truellll
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Limitation: Loss of Information

The reverse is not truellll

F1
T2

T
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Limitation: Loss of Information

The reverse is not truellll

T
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Limitation: Loss of Information

Two nets with the same coverability graph!
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Limitation: Loss of Information

Two nets with the same coverability graph!

pl : t1 P2 2
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Limitation: Loss of Information

Two nets with the same coverability graph!

pl : t1 P2 2
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Coverability Graph: Exercice
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Coverability Graph: Exercice
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Coverability Graph: Another Exercice

T P2 T2

P1 T3 P3
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Coverability Graph: Another Exercice
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@ Formal Specifications

@ Linear Temporal Logic (LTL)
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Temporal Logics

Two kinds of temporal operators J

@ sequence of expected events along one path
eeg U X G F
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Temporal Logics

Two kinds of temporal operators |

@ sequence of expected events along one path
eeg U X G F

Insufficient: are all/some paths starting from a given state satsfy
some property?

path quantifiers
@ quantify paths starting from a state and satisfying a property
ecg A E
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Linear Temporal Logic (LTL)

Syntax
AP: a set of atomic propositions
° ¢ = true | logical constant true

p | atomic proposition
- | negation
eNg| and
X | next time
Uy Until
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Linear Temporal Logic (LTL)

Syntax
AP: a set of atomic propositions
° ¢ = true | logical constant true

p | atomic proposition
- | negation
eNg| and
X | next time
Uy Until

Abreviations :
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Linear Temporal Logic (LTL)

Syntax
AP: a set of atomic propositions
° ¢ = true | logical constant true

p | atomic proposition
- | negation
eNg| and
X | next time
Uy Until

Abreviations :
0 p1 = P2 =1V 2
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Linear Temporal Logic (LTL)

Syntax
AP: a set of atomic propositions
° ¢ = true | logical constant true

p | atomic proposition
- | negation
eNg| and
X | next time
Uy Until

Abreviations :
° Y1 = P2="7p1V P
e Fyp:  now or sometimes in the future
o Fp=true Uy
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Linear Temporal Logic (LTL)

Syntax
AP: a set of atomic propositions
° ¢ = true | logical constant true

p | atomic proposition
- | negation
eNg| and
X | next time
Uy Until

Abreviations :
Y1 = P2 =1V
e Fyp:  now or sometimes in the future
o Fp=true Uy
e Gy: now and always in the future
o Gp=-F-yp

82 /113
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LTL: Semantics

Express sequence of events along a path )

Operator X "next"

(——O—O—0O-
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Temporal connectors

Express sequence of events along a path )

Operator U "p true until g true"

Cora > —()—C ) —(D—(O—

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 84 /113



Temporal connectors

Express sequence of events along a path )

Operator G "always in the future"
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Temporal connectors

Express sequence of events along a path )

Operator F "eventually in the future"

) —O—O—0O—-
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LTL: Semantics

LTL is interpreted on infinite paths of a Kripke structure K.
T =5—S1—...
o ml=piff pe L(s)
TE @1 ANpiff =1 and 7 = @2
T piffnot =@
7 = Xy iff 7t |= ¢ (7 = suffix of 7 starting at s;)
ThE e Up iff3i>0st. 7 Ep,and VO<j < iAT = o
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LTL: Semantics

LTL is interpreted on infinite paths of a Kripke structure K.
T =5—S1—...
o ml=piff pe L(s)
oeTE Vi Npiff =1 and m =
ok piffnot =
o 7= Xy iff 7 |= ¢ (7' = suffix of 7 starting at s;)
o mEiUp iff i >0st. ' Eprand VO < j<iA® =

KEp< Vpathmof K, m = ¢

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 87 / 113



LTL: Exercice

Ecrire les formules LTL formalisant les propriétés suivantes :

00

6 0 00 0000

One day, p will occur

p is always true

p occurs infinitely often

p and g are never true simultaneously

After an occurrence of p there will be at least one occurrence of g

If p1 occurs infinitely often and p» occurs inifnitely often, then each occurrence of g3 is
followed by an occurrence of q».

Before each occurrence of p, there is at least one occurrence of q.

Between each couple of occurrence of p there is at least one occurrence of g.

No other coffee orders are accepted between the payment of the amount due and the
removal of the cup.

If the machine accepts a card, it does not accept the other before having ejected the first
card.
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LTL: Exercice

Ecrire les formules LTL formalisant les propriétés suivantes :
@ One day, p will occur (Fp)
Q@ pis always true (Gp)
© p occurs infinitely often(GFp)
0 p and g are never true simultaneously
e After an occurrence of p there will be at least one occurrence of g

e If p1 occurs infinitely often and p» occurs inifnitely often, then each occurrence of g3 is
followed by an occurrence of q».

Before each occurrence of p, there is at least one occurrence of q.

Between each couple of occurrence of p there is at least one occurrence of g.

No other coffee orders are accepted between the payment of the amount due and the
removal of the cup.

6 0 00

If the machine accepts a card, it does not accept the other before having ejected the first
card.
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LTL: Exercice

Ecrire les formules LTL formalisant les propriétés suivantes :
@ One day, p will occur (Fp)
Q@ pis always true (Gp)
© p occurs infinitely often(GFp)
@ bp and g are never true simultaneously (=F(p A q) ou encore G—(p A q))
e After an occurrence of p there will be at least one occurrence of g
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© p occurs infinitely often(GFp)
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e If p1 occurs infinitely often and p» occurs inifnitely often, then each occurrence of g3 is
followed by an occurrence of 2. ((GFp1 A GFP2) — G(q1 = Fq2))

Before each occurrence of p, there is at least one occurrence of q. (G(—p) V (—p)Uq)

Between each couple of occurrence of p there is at least one occurrence of g.
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No other coffee orders are accepted between the payment of the amount due and the
removal of the cup.
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© After an occurrence of p there will be at least one occurrence of g (G(p = F q))

e If p1 occurs infinitely often and p» occurs inifnitely often, then each occurrence of g3 is
followed by an occurrence of 2. ((GFp1 A GFP2) — G(q1 = Fq2))

Before each occurrence of p, there is at least one occurrence of q. (G(—p) V (—p)Uq)

Between each couple of occurrence of p there is at least one occurrence of g.

(G(p = X (G=pV FpA((=p)Uq))))

No other coffee orders are accepted between the payment of the amount due and the
removal of the cup. (G(pay = (—orderUremove)))

6 0 00

If the machine accepts a card, it does not accept the other before having ejected the first
card.
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LTL: Exercice

Ecrire les formules LTL formalisant les propriétés suivantes :
@ One day, p will occur (Fp)
Q@ pis always true (Gp)
© p occurs infinitely often(GFp)
@ bp and g are never true simultaneously (=F(p A q) ou encore G—(p A q))
© After an occurrence of p there will be at least one occurrence of g (G(p = F q))

e If p1 occurs infinitely often and p» occurs inifnitely often, then each occurrence of g3 is
followed by an occurrence of 2. ((GFp1 A GFP2) — G(q1 = Fq2))

Before each occurrence of p, there is at least one occurrence of q. (G(—p) V (—p)Uq)

Between each couple of occurrence of p there is at least one occurrence of g.

(G(p = X (G=pV FpA((=p)Uq))))

No other coffee orders are accepted between the payment of the amount due and the
removal of the cup. (G(pay = (—orderUremove)))

6 0 00

If the machine accepts a card, it does not accept the other before having ejected the first
card. (G(accept =—> X(—accept U eject)))
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Does the property holds? counterexample?

G(start = F stop)

tu

closed

closed

cooking

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 89 / 113



Does the property holds? counterexample?

G(start = F stop) \/

t

closed

cooking
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Does the property holds? counterexample?

G F turn_off

tu

closed

closed

cooking
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Does the property holds? counterexample?

G F turn_off \/(pu// push)®

tu

closed
cooking
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Does the property holds? counterexample?

G F (turn_off V push)

tu

closed

closed

cooking
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Does the property holds? counterexample?

G F (turn_off V push) \/

tu

closed
cooking
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Does the property holds? counterexample?

G False v F(turn_off V push)

tu

closed
cooking
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Does the property holds? counterexample?

G False V F(turn_off \ push) \/

tu

closed
cooking
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Does the property holds? counterexample?

G(start = (cook U F turn_off))

tu

closed

closed

cooking
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Does the property holds? counterexample?

G(start = (cook U F turn_off)) \/

tu

closed
cooking
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© LTL Model Checking
@ Biichi Automata
@ Automata-Theoretic Explicit LTL Model Checking
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© LTL Model Checking
@ Biichi Automata
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Biichi Automata

A Biichi automaton is 6-tuple A= (¥, Q, Qo, F,J) where:
@ X is a finite alphabet

Q is a finite set of state

F is a set of accepting states

o
o @ is a set of initial states
o
00 C Qx2"xQ.
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Biichi Automata

A Biichi automaton is 6-tuple A= (¥, Q, Qo, F,J) where:
@ X is a finite alphabet

Q is a finite set of state

F is a set of accepting states

o
o @ is a set of initial states
o
00 C Qx2"xQ.

An infinite run is accepted by A iff it goes through states of F
infinitely often
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Biichi Automata

A Biichi automaton is 6-tuple A= (¥, Q, Qo, F,J) where:
@ X is a finite alphabet

Q is a finite set of state

F is a set of accepting states
dC Q x2*x Q.

o
o @ is a set of initial states
o
o

An infinite run is accepted by A iff it goes through states of F
infinitely often

For any LTL formula ¢ there exists a Biichi automaton Q, s.t.
L(Asa) = L(SO)
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Biichi Automata

A Biichi automaton is 6-tuple A= (¥, Q, Qo, F,J) where:
@ X is a finite alphabet

Q is a finite set of state

F is a set of accepting states
dC Q x2*x Q.

o
o @ is a set of initial states
o
o

An infinite run is accepted by A iff it goes through states of F
infinitely often

©

For any LTL formula ¢ there exists a Biichi automaton Q, s.t.
L(Ay) = L(y)
o Generalized Biichi Automata (State/Transition-Based)
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From LTL to Blichi automata
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From LTL to Blichi automata

p T

SO:FP Aap: —> P
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From LTL to Blichi automata
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From LTL to Blichi automata

p=aUb
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From LTL to Blichi automata

ab T

p=aUb Ay —> b
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From LTL to Blichi automata

p=G(p = Fq)
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From LTL to Blichi automata

¢p=G(p = Fq)
pVq

pA—q
A=) 0

q
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From LTL to Blichi automata

v=-G(p = Fq)
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From LTL to Blichi automata

T q

v=-G(p = Fq) Ay —> Pa
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© LTL Model Checking

o Automata-Theoretic Explicit LTL Model Checking
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Automata-Theoretic Explicit LTL Model Checking

High-level
model M

7’ State-space
generation

State-space
automaton
Am

Product
Automaton

Synchronized

product
LA, ® Aum) = Emptiness check
ZL(A-)NZL(An)) \L(Aw@AM) <0

Z

N
egated M = o or

property au-
A counterexample
tomaton A-,

LTL
translation

LTL
property ¢
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Automata-Theoretic Explicit LTL Model Checking

High-level
model M

7’ State-space
generation

State-space
automaton
Am

Product
Automaton
A, ® Am

Synchronized

product
LA, ® Aum) = Emptiness check
ZL(A-)NZL(An)) \L(Aw@AM) <0

Z

N
egated M = o or

property au-
A counterexample
tomaton A-,

LTL
translation

LTL
property ¢
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Automata-Theoretic Explicit LTL Model Checking

High-level
model M

On-the-fly generation
of state-space automaton
Am

Product
Automaton
A, ® Am

Synchronized

product
LA, ® Aum) = Emptiness check
ZL(A-)NZL(An)) \L(Aw@AM) <0

B

N
egated M= o or

property au-
A counterexample
tomaton A-,

LTL
translation

LTL
property ¢
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Automata-Theoretic Explicit LTL Model Checking

High-level
model M

On-the-fly generation
of state-space automaton

Am
On-the-fly
synchronized product
LA ® An) = Emptiness check
ZL(A-p) N Z(Aw) L(A-,®Au) =0
Negated g

M = ¢ or
counterexample

property au-
tomaton A-,

LTL
translation

LTL
property ¢
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LTS x Biichi Automaton
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LTS x Biichi Automaton
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Kripke Srutcure x Biichi Automaton

ég_, abc %_} abc
5D 0w
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Kripke Srutcure x Biichi Automaton

abc \‘abc abc abc

O .*
. @ 50 - »&3

abe abc
AW®AM
abc! y abc abc, abc

Dads  toncs
qo, S2 qo, S1 a1, Se qi,s7
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LTS x Bichi Automaton: Exercice

Let us demonstrate by model checking that G F turn  off is not
satisfied

closed

tu

closed

closed

cooking
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LTS x Bichi Automaton: Exercic

o Build a Biichi automaton with the same language as
—(G F turn_off).

o Let us start from the unnegated formula: G F turn off
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LTS x Bichi Automaton: Exercic

G F turn_off

@ F
—turn off

@ off
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LTS x Bichi Automaton: Exercic

—(G F turn_off)

| f

—turn off

@ :
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LTS x Biichi Automaton

tu

—turn off

off

closed

cooking
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LTS x Biichi Automaton

closed
cooking

B
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Kripke Structure x Biichi Automaton: Exercice

Express (with LTL) and Check the three properties of the mutual
exclusion Petri net model

mo=p1+rmp+rqg+aq
m=p2+rg+aq

my =p3+rq+q

m3 = p3 + q2

myg = p3 + q2

ms = p1+rp+qz2

me = p1+rp+ g3

m7 = p2+q2

tp3

my ——» m3

tq1
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