Specification, Design and Verification

Kais Klai and Walid Gaaloul

EFREI 16-17 Specification, Design and Verification 1/113

© Object Oriented Design
o To describe the activities in the object-oriented design process
o To introduce various UML models that can be used to describe
an object-oriented design
e To show how to use OCL to guarantee the models’ constraints

EFREI 16-17 Specification, Design and Verification 2 /113

© Object Oriented Design

o To describe the activities in the object-oriented design process

e To introduce various UML models that can be used to describe

an object-oriented design

e To show how to use OCL to guarantee the models’ constraints
© Formal Modeling and Verification

o How to model a concurrent system (using Petri nets)

o How to express behavioral properties (LTL)

o How to check a property on a system

EFREI 16-17 Specification, Design and Verification 2 /113

© Object Oriented Design

o To describe the activities in the object-oriented design process

e To introduce various UML models that can be used to describe

an object-oriented design

e To show how to use OCL to guarantee the models’ constraints
© Formal Modeling and Verification

o How to model a concurrent system (using Petri nets)

o How to express behavioral properties (LTL)

o How to check a property on a system

© Test

o Test of Object Oriented applications
o Unit, Integration and Validation Test

EFREI 16-17 Specification, Design and Verification 2 /113

o 14h lecture (CM)
@ 10h30 Tutorials (TP)
@ 10h30 Tutorials (Project)

o Evaluation :

e 1 exam (DE) (66.66%)
e a project (33.33%)

EFREI 16-17 Specification, Design and Verification 3 /113

Formal Specification and Verification of

Concurrent Systems

Kais Klai

Mattre de Conférences, LIPN
Université Paris 13 Sorbonne Paris Cité

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 4 /113

@ Context
© Model Checking
© Formalisms and Notations

@ Formal Specifications
@ Petri nets
o Coverability Graph
@ Linear Temporal Logic (LTL)

© LTL Model Checking

@ Biichi Automata
@ Automata-Theoretic Explicit LTL Model Checking

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 5 /113

Outline

@ Context

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 6 /113

Context

System ¢ » Property

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 7 /113

Some Properties

@ Reachability: A certain situation can be reached
x may be zero, each instruction can be executed

@ Invariant: Each state respects some good property
x is never equal to zero, an array never overflows

@ Safety: Something bad can never happen
| access the file if | enter the correct PIN

@ Liveness: Something good can always happen
the program terminate, the message will eventually arrive to the
destination, the program always returns to the initial state

@ Fairness: Something good happens infinitely often
If a process asks to enter to a critical section infinitely often, it
will access it infinitely often

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 8 /113

Context

System ¢ » Property

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 9 /113

Context

Test
System ¢ » Property

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 10 / 113

Context

Test
System ¢ » Property

Not exhaustive

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 11 / 113

Context

System Property
Modelling Specification
% W
System Property

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 12 / 113

Context

System

Modelling

v

System

Property
Specification
A 2
Formal
<& > Property
Verification

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 13 / 113

Formal Verification

© Theorem Proving

o Logical description of the system
o Prove properties by deduction
o Not fully automatic

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 14 / 113

Formal Verification

© Theorem Proving
o Logical description of the system
o Prove properties by deduction
o Not fully automatic
© Model Checking
o Exhaustive verification
o Fully automatic
o Counter-examples

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 14 / 113

Example: Mutual Exclusion Algorithm

Global variables: regp and reqq

Process P
1. regp <1
2. wait(reqg =0)
3. Critical Section
4. regp <0

Process Q

1.

2.
3.
4

reqg <+ 1
wait(regp = 0)
Critical Section
reqg <+ 0

Initial state: reqp = reqg = 0

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 15 / 113

Example: Mutual Exclusion Algorithm

Global variables: regp and reqq

Process P
1. regp <1
2. wait(reqg =0)
3. Critical Section
4. regp <0

Process Q

1.

2.
3.
4

reqg <+ 1
wait(regp = 0)
Critical Section
reqg <+ 0

Initial state: reqp = reqg = 0

Properties to be checked:
© Mutual exclusion

© Fairness

© Order

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 15 / 113

Example: Reachability State Space

P=1reqp =0

Q=1,reqqg =0

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 16 / 113

Example: Reachability State Space

P=1,reqgp =0
Q:l,rqu:O

/

P=2reqp=1

Q:l,rqu:O

P=3,reqgp =1
Q=1reqq =0

P=4,reqgp =1

Q=1reqq =0

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 17 / 113

Example: Reachability State Space

/

P=1,reqp =0

Q=1,reqqp=0

P=1,reqp =0
Q=2,reqq =1

P=1,reqp =0
Q=3,reqq =1

P=1,reqp =0
Q=4,reqq =1

/

P=2reqp=1
Q=1,reqq =0

P=3,reqp =1
Q:l,rqu:O

\

P=4,reqp =1

Q=1,reqq=0

EFREI 16-17 Formal Specification and Verification of Concurrent Systems

18 / 113

EFREI 16-17

Example: Reachability State Space

/

P=1,reqp =0

Q=1reqq =0

P=1reqp =0

Q:2,rqu:1

P=1,reqp =0
Q=3,reqq =1

P=1,reqp =0
Q=4,reqq =1

/

<

P=2regp=1
Q=1,reqq =0

P=2reqp=1
Q=2,reqq=1

P=2reqp=1
Q=3,reqq =1

P=3,reqp =1
Q=1reqq =0

P=3,reqgp =1
Q=2reqqg =1

\

/

P=4reqgp =1

Q=1reqq =0

P=4reqp=1

Q=2,reqq =1

Formal Specification and Verification of Concurrent Systems

19 / 113

Property 1: Mutual Exclusion

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 20 / 113

Property 1: Mutual Exclusion

We never have P=3AQ =3

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 20 / 113

Property 1: Mutual Exclusion

We never have P=3AQ =3

That's true

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 20 / 113

Property 1: Mutual Exclusion

We never have P=3/AQ =3

That's true

To check this property we browse the set of reachable states. We
need reachable states only, not the transitions between states.

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 20 / 113

Property 2: Fairness

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 21 /113

Property 2: Fairness

Each path starting at a state where P = 2 traverses a state where
P = 3, and the same for Q

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 21 /113

Property 2: Fairness

Each path starting at a state where P = 2 traverses a state where
P = 3, and the same for Q

That's false: State (P =2, regp =1, Q =2, ,reqg = 1) has no
successor

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 21 /113

Property 2: Fairness

Each path starting at a state where P = 2 traverses a state where
P = 3, and the same for Q

That's false: State (P =2, regp =1, Q =2, ,reqg = 1) has no
successor

To check this property we browse the reachability graph (having the
reachable states only is not sufficient).

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 21 /113

Property 3: Order

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 22 /113

Property 3: Order

Each path starting at a state where P =2 A Q@ = 1 do not visit a
state satisfying @ = 3 before visiting a state where P =3
(4+ a symmetric property for Q).

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 22 /113

Property 3: Order

Each path starting at a state where P =2 A Q@ = 1 do not visit a
state satisfying @ = 3 before visiting a state where P =3
(4+ a symmetric property for Q).

That's false: Starting from (P =2, regp =1, Q =1, reqq = 0),
there exists a path where P = 3 is never satisfied.

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 22 /113

Property 3: Order

Each path starting at a state where P =2 A Q@ = 1 do not visit a
state satisfying @ = 3 before visiting a state where P =3
(4+ a symmetric property for Q).

That's false: Starting from (P =2, regp =1, Q =1, reqq = 0),
there exists a path where P = 3 is never satisfied.

To check this property we browse the reachability graph (having the
reachable states only is not sufficient).

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 22 /113

Outline

© Model Checking

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 23 /113

Model checking of finite state systems

Principle
@ Design the system with a model M and design a property ¢
Q@ M E 7 if no, a counter-example o

© Analyse the result:

o If yes, OK
e If no, refine M using o and go to (1).

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 24 /113

Model checking of finite state systems

Principle
@ Design the system with a model M and design a property ¢
Q@ M E 7 if no, a counter-example o

© Analyse the result:

o If yes, OK
e If no, refine M using o and go to (1).

Approach

o State space traversal (Labeled Transition System)

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 24 /113

Example

Is there any safe path?

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 25 /113

Example

YES

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 26 / 113

Example

Are all the paths safe?

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 27 / 113

Example

NO

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 28 / 113

Formal Specifications

© The System
Systems are formally expressed using:
o State Machines
o Automata
o Petri Nets

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 29 /113

Formal Specifications

© The System
Systems are formally expressed using:
o State Machines
o Automata
o Petri Nets
© The properties
Properties are formally expressed using temporal logics
o Linear Temporal Logic (LTL)
o Tree Computational Logic (CTL)
o CTL*

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 29 /113

Formal Specifications

© The System
Systems are formally expressed using:

o State Machines
o Automata
o Petri Nets

© The properties
Properties are formally expressed using temporal logics

o Linear Temporal Logic (LTL)
o Tree Computational Logic (CTL)
o CTL*

Advantages:
@ unambiguous
@ generic

o allows for automatic verification
29 / 113

Example

Let's be serious 5 minutes

b g

o A: for all paths

o [there exists a path
o (: always

o g: Gargamel

@ 1 negation

g

The formula £EG —g is satisfied by the model

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 30 / 113

Model Checking

Ingredients
e /M = The behavior of the System
e . — a temporal formula

o VIC = M ¢?

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 31 /113

Model Checking

Ingredients
e /M = The behavior of the System
e . — a temporal formula

o VIC = M ¢?
Advantages
@ During specification/design time
@ Automatic
o Global w.r.t. Test
o Efficient (in some fields)

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 31 /113

Model Checking

Ingredients
e /1 — The behavior of the System
e . — a temporal formula

o VIC = M ¢?
Advantages

@ During specification/design time

@ Automatic

o Global w.r.t. Test

o Efficient (in some fields)
Drawbacks

o Finite LTSs

@ Requires formal expertise

o State space explosion problem

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 31 /113

State space explosion problem

Reduction Techniques

@ On-the-fly construction

e Stop the exploration as soon as a counter-example is
found

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 32 /113

State space explosion problem

Reduction Techniques

@ On-the-fly construction

e Stop the exploration as soon as a counter-example is
found

o Partial order reduction
o Exploits the independence between actions

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 32 /113

State space explosion problem

Reduction Techniques

@ On-the-fly construction

e Stop the exploration as soon as a counter-example is
found

o Partial order reduction
o Exploits the independence between actions

o Stuttering equivalence
o stutter-invariant formula

° aé.aé.al}.alg.ab.ab. ..
o ab.ab.ab.ab.ab.ab.ab. . ..

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 32 /113

State space explosion problem

Reduction Techniques

@ On-the-fly construction
e Stop the exploration as soon as a counter-example is
found
o Partial order reduction
o Exploits the independence between actions

o Stuttering equivalence
o stutter-invariant formula

° aé.aé.al}.alg.ab.ab. ..
o ab.ab.ab.ab.ab.ab.ab. . ..

o Modularity

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 32 /113

State space explosion problem

Reduction Techniques

@ On-the-fly construction

e Stop the exploration as soon as a counter-example is
found

o Partial order reduction
o Exploits the independence between actions

o Stuttering equivalence
o stutter-invariant formula

° aé.aé.al}.alg.ab.ab. ..
o ab.ab.ab.ab.ab.ab.ab. . ..

o Modularity

e Symbolic representations (e.g., BDDs)

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 32 /113

State space explosion problem

Reduction Techniques

o On-the-fly construction \/

e Stop the exploration as soon as a counter-example is
found

o Partial order reduction
o Exploits the independence between actions

o Stuttering equivalence \/
o stutter-invariant formula

° aé.aé.al}.alg.ab.ab. ..
o ab.ab.ab.ab.ab.ab.ab. . ..

o Modularity \/
e Symbolic representations (e.g., BDDs) \/

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 32 /113

Outline

© Formalisms and Notations

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 33 /113

State Machines

Syntactical Representation of a System

S=(CV,AT)
@ C: Control States
@ V: Variables
@ A: Actions on V
@ T: Transitions

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 34 /113

State Machines

Syntactical Representation of a System

S=(CV,AT)
@ C: Control States
@ V: Variables
@ A: Actions on V
@ T: Transitions

serving

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 34 /113

back, paid:=false

Labeled Transition System (LTS)

LTS = Semantics of the system

S=(Q,T,—)
@ Q: set of states (control
state,valeriable's values)
@ T: set of transitions
o -C R@xTxQ: the
transition relation

@ we can add an initial state /

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 35 /113

Labeled Transition System (LTS)

LTS = Semantics of the system

S=(Q,T,—)

@ Q: set of states (control
state,valeriable's values)

@ T: set of transitions

o -C R@xTxQ: the
transition relation

@ we can add an initial state /

Q represents the possible states of the system
a transition t can be executed at state a leading to state ¢’ is

(9,t,q") €= (denoted by —"¢')

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 35 /113

Labeled Transition System (LTS)

LTS = Semantics of the system

S=(Q,T,—)

@ Q: set of states (control
state,valeriable's values)

@ T: set of transitions

o -C R@xTxQ: the
transition relation

@ we can add an initial state /

Q represents the possible states of the system
a transition t can be executed at state a leading to state ¢’ is

(9,t,q") €= (denoted by —"¢')

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 35 /113

Executions of the system

idle,2,false

money
- idle,1,false

(O f)’my(1f-)money(2 f)chon:e(s 0 t)

@ money, money, choice, served, back, money

L(S) = Language of S= The set of executions of S]

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 36 / 113

Concurrency

Asynchronous product |

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 37 /113

Concurrency

Asynchronous product)

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 37 /113

Concurrency

Synchronous product |

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 38 /113

Concurrency

Synchronous product)

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 38 /113

Kripke structure

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 39 /113

Kripke stru

EFREI 1

money
xdle, 1,false

‘

idle,0, false

money
idle,2,false

rmal Specification and Ver

39 /113

Exercice: The Lift Example

The lift controller system (for 3 floors) is defined by:
o the controller saves in memory the current and the target floors.

9 in active mode, when the target floor is reached, the doors are opened and the controller
switches to the idle mode.

e in active, when the target floor is greater than the current one, the controller raises the
lift.

0 in active, when the target floor is lower than the current one, the controller lowers the lift.

@ in the idle mode, it may be that someone enters the lift and choose a new target floor.
The elevator then closes the doors and becomes active.

e initially, the elevator is at floor 0 and in the idle mode.
Questions

@ Design the system using a state machine (formal definition and the figure).

e Define and draw the corresponding transition system.

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 40 / 113

The Lift Example

State Machine

@ V= courant: int[0...2], cible: int[0...2], open: bool
@ random.in € [0...2]

choice
true -> cible:=random_int up
open:=false courant < cible -> courant++
ok ‘
courant == cible -> open := true down

courant > cible -> courant--

EFREI 1

Formal Specification and Verification of Concurrent Systems 41 / 113

The Lift Example

Labeled Transition System

idle, true, 0,0
choice

active, false, 0, 2

choice

active, false, 0, 1

active,false,0,0

active, false, 1,2

active, false, 1,1

active, false, 2,2

idle, true, 1,1

down idle, true, 2,2

choice

down
choice
ﬁ‘:{b active, faise, 2, 1

down

choice

choice

42 /113

Outline

@ Formal Specifications
@ Petri nets
o Coverability Graph
@ Linear Temporal Logic (LTL)

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 43 / 113

@ Formal Specifications
@ Petri nets

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 44 / 113

Petri Nets [Petri 73]

Syntax
A Petri net is 5-tuple N = (P, T, F, W, mg) where:

@ P is a finite set of places (cercles) and T a finite set of
transitions (squares) with (PU T) # @ and PN T = 0,

o A flow relation F C (P x T)U (T x P),
o W:F — N7 assigns a weight (> 0)to any arc.

@ An initial marking my where a marking m is a mapping
m: P — N.

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 45 / 113

Petri Nets [Petri 73]

Syntax

Definition

A Petri net is 5-tuple N = (P, T, F, W, mg) where:
@ P is a finite set of places (cercles) and T a finite set of
transitions (squares) with (PU T) # @ and PN T = 0,

o A flow relation F C (P x T)U (T x P),

o W:F — N7 assigns a weight (> 0)to any arc.

@ An initial marking my where a marking m is a mapping
m: P — N.

Incidence matrix C: V(p,t) € P x T : C(p,t) = W(t,p) — W(p,t)

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 45 / 113

Petri Nets [Petri 73]

Syntax

Definition

A Petri net is 5-tuple N = (P, T, F, W, mg) where:
@ P is a finite set of places (cercles) and T a finite set of
transitions (squares) with (PU T) # @ and PN T = 0,

o A flow relation F C (P x T)U (T x P),
o W:F — N7 assigns a weight (> 0)to any arc.

@ An initial marking my where a marking m is a mapping
m: P — N.

Incidence matrix C: V(p,t) € P x T : C(p,t) = W(t,p) — W(p,t)
Notation: C(p,t) = Post(t,p) — Pre(t,p))

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 45 / 113

Petri Nets: an example

t ty
PI P2 Ps P4
o . -1 0 1 0 0 0
3 5 1 -1 0 0 0 0
0 1 -1 0 0 0
p7 0o 0 0 -1 0 1
P3 Po

0 0 0 1 -1 0
3 0o 0 0 0 1 -1
t3 t6 0 -1 1 0 -3 3

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 46 / 113

Petri Nets: Semantics

o Fireability of a transition

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 47 / 113

Petri Nets: Semantics

o Fireability of a transition
o tis fireable at a marking m iff Vp, W(p, t) < m(p)

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 47 / 113

Petri Nets: Semantics

o Fireability of a transition
o tis fireable at a marking m iff Vp, W(p, t) < m(p)

Ki ﬁ
or

not firable

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 47 / 113

Petri Nets: Semantics

o Fireability of a transition
o tis fireable at a marking m iff Vp, W(p, t) < m(p)

P1 b2 p3 Pi p2 p3
@\ 2/@ @\ iz 3
t; 4
4 4

not firable firable

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 47 / 113

Petri Nets: Semantics

@ Firing a transition

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 48 / 113

Petri Nets: Semantics

@ Firing a transition

o The firing of a (fireable) transition t from a marking m leads to
m' =m— W(p,t)+ W(t,p)

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 48 / 113

Petri Nets: Semantics

@ Firing a transition

o The firing of a (fireable) transition t from a marking m leads to
m' =m— W(p,t)+ W(t,p)

pi p2 p3

t

4
@P4

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 48 / 113

Petri Nets: Semantics

@ Firing a transition

o The firing of a (fireable) transition t from a marking m leads to
m' =m— W(p,t)+ W(t,p)

% @\;f

or o

=,

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 48 / 113

Petri Nets: Expression Power

o Causality

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 49 / 113

Petri Nets: Expression Power

e Conflict/Choice

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 50 / 113

Petri Nets: Expression Power

e Conflict/Choice

P1
ty) 3
p2 P3 P4

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 50 / 113

Petri Nets: Expression Power

e Conflict/Choice
P1
9] ty 3 m
PZI p3 P4z z

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 50 / 113

Petri Nets: Expression Power

o Parallelism

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 51 /113

Petri Nets: Expression Power

o Parallelism

P1 P2 P3
t 6] 3
P4 Ps Pe

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 51 /113

Petri Nets: Expression Power

o Parallelism

p1 p2 p3 P1 p2
ty t t3 ty 1) t3
P4 ps Pe pP3 P4 Ps

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 51 /113

Petri Nets: Expression Power

@ Synchronization

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 52 /113

Petri Nets: exercice 1

O T30

b -0

—T

e Give the Pre, Post and the incidence matrices of this Petri net.

e Which are the fireable transitions from the initial marking?

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 53 /113

Petri Nets: exercice 2

2
5

.

-

6
\D ;
T3

0 Is Ty fireable from the initial marking? If yes, which is the reachable marking?
@ Give the incidence matrix of this Petri net.

e Check formally the fireability of the transition Ty. If Ty is fireable, then compute the
reachable marking formally.

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 54 / 113

Petri Nets: Semantics (Cont.)

@ o=t...t, € T is fireable at my (denoted by my—Zs iff
Imy...m, st. mp-ymyi—s ... oum,

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 55 / 113

Petri Nets: Semantics (Cont.)

@ o=t...t, € T is fireable at my (denoted by my—Zs iff
Imy...m, st. mp-ymyi—s ... oum,
o L(N,mo) ={c e T | my-s}

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 55 / 113

Petri Nets: Semantics (Cont.)

@ o=t...t, € T is fireable at my (denoted by my—Zs iff
Imy...m, st. mp-ymyi—s ... oum,
o L(N,mo) ={c e T | my-s}

o R(N, m) = the set markings reachable from a marking m of N

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 55 / 113

Petri Nets: Semantics (Cont.)

@ o=t...t, € T is fireable at my (denoted by my—Zs iff
Imy...m, st. mp-ymyi—s ... oum,

o L(N,mg) ={oce T | m-Zs}

o R(N, m) = the set markings reachable from a marking m of N

o the reachability graph is a LTS (S, A, —, s0) s.t.

e S= R(N, mo)

o A=T

@ Sp = Mo

° (51, t,52) e— iff 51i>52

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 55 / 113

Petri Nets: Reachability Graph

pl 2 tl p2 t2
t3
p3

initial marking (3,0, 0), then (0, 1,0)

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 56 / 113

Petri Nets: Reachability Graph

t4 > 2

Goo—1—» (o) Con (@190 (001
t3 t3

my = (3, 0, O) my = (Oa 17 0)

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 57 / 113

Petri Nets: Reachability Graph

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 58 / 113

Petri Nets: Reachability Graph

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 59 / 113

Example: Mutual Exclusion Algorithm

Global variables: regp and reqq

Process P
1. regp <1
2. wait(reqg =0)
3. Critical Section
4. regp <0

Process Q

1.

2.
3.
4

reqg <+ 1
wait(regp = 0)
Critical Section
reqg <+ 0

Initial state: reqp = reqg = 0

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 60 / 113

Example: Mutual Exclusion Algorithm

Global variables: regp and reqq

Process P
1. regp <1
2. wait(reqg =0)
3. Critical Section
4. regp <0

Process Q

1.

2.
3.
4

reqg <+ 1
wait(regp = 0)
Critical Section
reqg <+ 0

Initial state: reqp = reqg = 0

Properties to be checked:
© Mutual exclusion

© Fairness

© Order

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 60 / 113

Example: Mutual Exclusion Algorithm

p1 p rq q1

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 61 / 113

Example: Mutual Exclusion Algorithm

mo=p1+rp+rqg+aq
my =p2+rqg+q1

my =p3+rqg+aq

m3 = p3 + q2

mg = p3 + q2

ms = p1+rp+q2

me = p1+rp+ g3

m7 = p2 + q2

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 62 / 113

Example: Mutual Exclusion Algorithm

mo=p1+rp+rqg+aq
my =p2+rqg+q1

my =p3+rqg+aq

m3 = p3 + q2

mg = p3 + q2

ms = p1+rp+q2

me = p1+rp+ g3

m7 = p2 + q2

my ——> m3

tq1

Compare with the previous reachability graph of the mutual exclusion example

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 62 / 113

Petri Nets modeling a hairdresser

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 63 / 113

Petri Nets modeling a hairdresser

to P1

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 63 / 113

Petri Nets modeling a hairdresser (Cont.)

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 64 / 113

Petri Nets: Properties

@ A marking m* is a home state if and only if YVm € R(N, mg), m* € R(N, m).

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 65 / 113

Petri Nets: Properties

@ A marking m* is a home state if and only if YVm € R(N, mg), m* € R(N, m).

@ N is reversible iff mg is a home state.

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 65 / 113

Petri Nets: Properties

@ A marking m* is a home state if and only if YVm € R(N, mg), m* € R(N, m).
@ N is reversible iff mg is a home state.
@ N is bounded iff Vp € P: 3k € Ns.t. Vm € R(N, mg), m(p) < k.

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 65 / 113

Petri Nets: Properties

@ A marking m* is a home state if and only if YVm € R(N, mg), m* € R(N, m).
@ N is reversible iff mg is a home state.

@ N is bounded iff Vp € P: 3k € Ns.t. Vm € R(N, mg), m(p) < k.

@ N is structurally bounded iff N is bounded for all initial marking mg.

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 65 / 113

Petri Nets: Properties

A marking m* is a home state if and only if Ym € R(N, mg), m* € R(N, m).
N is reversible iff mg is a home state.

N is bounded iff Vp € P: 3k € Ns.t. Vm € R(N, mg), m(p) < k.

N is structurally bounded iff N is bounded for all initial marking mg.

N is quasi-live iff Vt € T : 3M € R(N, mg) for which t is enabled.

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 65 / 113

Petri Nets: Properties

A marking m* is a home state if and only if Ym € R(N, mg), m* € R(N, m).
N is reversible iff mg is a home state.

N is bounded iff Vp € P: 3k € Ns.t. Vm € R(N, mg), m(p) < k.

N is structurally bounded iff N is bounded for all initial marking mg.

N is quasi-live iff Vt € T : 3M € R(N, mg) for which t is enabled.

N is deadlock-free (weakly live) iff YM € R(N, mg), 3t € T enabled in M.

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 65 / 113

Petri Nets: Properties

A marking m* is a home state if and only if Ym € R(N, mg), m* € R(N, m).
N is reversible iff mg is a home state.

N is bounded iff Vp € P: 3k € Ns.t. Vm € R(N, mg), m(p) < k.

N is structurally bounded iff N is bounded for all initial marking mg.

N is quasi-live iff Vt € T : 3M € R(N, mg) for which t is enabled.

N is deadlock-free (weakly live) iff YM € R(N, mg), 3t € T enabled in M.
N is live iff Vt € T : Vm € R(N, mo)3m’ € R(N, m) for which t is enabled.

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 65 / 113

Petri Nets: Properties

A marking m* is a home state if and only if Ym € R(N, mg), m* € R(N, m).

N is reversible iff mg is a home state.

N is bounded iff Vp € P: 3k € Ns.t. Vm € R(N, mg), m(p) < k.

N is structurally bounded iff N is bounded for all initial marking mg.

N is quasi-live iff Vt € T : 3M € R(N, mg) for which t is enabled.

N is deadlock-free (weakly live) iff YM € R(N, mg), 3t € T enabled in M.
N is live iff Vt € T : Vm € R(N, mo)3m’ € R(N, m) for which t is enabled.

N is structurally live iff Vmo, (N, mg) is live.

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 65 / 113

Relation Between Properties

@ quasi-liveness VS Liveness 77

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 66 / 113

Relation Between Properties

@ quasi-liveness VS Liveness 77
@ quasi-liveness VS weak liveness 77

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 66 / 113

Relation Between Properties

@ quasi-liveness VS Liveness 77
@ quasi-liveness VS weak liveness 77

o liveness VS weak liveness 77

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 66 / 113

Relation Between Properties

@ quasi-liveness VS Liveness 77
@ quasi-liveness VS weak liveness 77
@ liveness VS weak liveness 77

@ mo home state and quasi live = live 77 (if yes, proof)

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 66 / 113

@ Formal Specifications

o Coverability Graph

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 67 / 113

p1

p2

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 68 / 113

EFREI 16-17

d it
(1.1
o
(1.2)

p2 t1

Formal Specification and Verification of Concurrent Systems

68 / 113

o Notations:
e new symbol w ¢ N s.t.
o w+tn=w

o w—n=w
@ w>n
o w<w

o N, =NU{w}

o For g e NJJ, g Y(w) = {p € P|q(p) =w}

Definition (Coverability Tree)

The coverability tree of a marked Petri net (N, mg) is a tree
(S, X) where:

o nodes of S are labeled with vectors in N7 (m =|| P ||)

o edges of X are labeled with transitions in T.

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 69 / 113

Coverability Tree: Algorithm

@ Label the initial marking mg as the root and tag it "new".
© While "new" markings exists, do the following:

@ Select a new marking m and remove the "new" tag.
@ If mis identical to a marking on the path from the root to m,
then tag m "old" and go to another new marking.
© If no transitions are enabled at m, tag m "dead-end".
@ While there exist enabled transitions at m, do the following for
each enabled transition t at m:
@ Obtain the marking m’ that results from firing t at m.
@ |If, on the path from the root to m, there exists a marking
m' # m’ such that m" > m”, then replace m'(p) w for each p
such that m’(p) > m”(p).
© Introduce m’ as a node, draw an arc with label t from m to n’,
and tag m’ "new".

© Output the tree

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 70 / 113

Coverability Tree: Example

o1 (o)
()

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 71 /113

Coverability Tree: Example

p1
()

4] [p1] [p1,p2"] [p1,p2"]

@ @
0 E>),. t1 t1

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 71 /113

Coverability Tree: Another Example

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 72 /113

Coverability Tree: Another Example

[p1,p3] [p1,02",p3] [p1,p2“,p3]

[P1,p2%,p3,p4]

[p1,p2",p3,p4"]
[p1,p2",p3,p4"]

[p1,p2",p3,p4"]

[
JONI® <

[p1,p2",p3,p4"]

[p1,p2",p3,p4"]

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 72 /113

Coverability Graph

Take the coverability tree and merge nodes with identical labels

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 73 /113

Coverability Graph

Take the coverability tree and merge nodes with identical labels
[p1] [p1,p2°] [p1.p2"]
)’ TNd JEmTae

[p1.p3] [p1.p2°p3] [p1,p2°p3]

[p1,p2°,p3,p4"]

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 73 /113

Coverability Graph

Take the coverability tree and merge nodes with identical labels

[p1] [p1,p2] [p1,p24] [p1] [p1,p2"]
N e t1
e o e

[p1.p3] [p1.p2°p3] [p1,p2°p3]

[p1,p3] [p1,p2°,p3]
t1

t2 t2

X A
N ,
4 w
. [P1.p3,p4]VT»
[p1,2°,p3,p4"] t2 t2

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 73 /113

t1
[p1,p2°,p3,p4"]

Coverability Graph: Another Example

Pl (11(2 X(1,0) ‘(1,0)
1.1 —2 (©0,0) i“ o l“
v

p2

B
s_‘
-\ N
=\

—

S

i

=

—_
=
€
<

—~

=

marked net reachability coverability coverability
graph tree graph

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 74 / 113

@ The coverability tree/graph is always finite.

@ The marked Petri net is bounded if and only if the corresponding
coverability tree/graph contains only w-free markings.

@ The coverability tree/graph gives an over-approximation.

o Different Petri nets may have the same coverability tree/graph.

@ Any firing sequence of the marked Petri net can be matched by
a "walk" through the coverability graph.

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 75 / 113

Limitation: Loss of Information

The reverse is not truellll

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 76 / 113

Limitation: Loss of Information

The reverse is not truellll

F1
T2

T

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 76 / 113

Limitation: Loss of Information

The reverse is not truellll

T

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 76 / 113

Limitation: Loss of Information

Two nets with the same coverability graph!

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 77 / 113

Limitation: Loss of Information

Two nets with the same coverability graph!

pl : t1 P2 2

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 77 / 113

Limitation: Loss of Information

Two nets with the same coverability graph!

pl : t1 P2 2

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 77 / 113

Coverability Graph: Exercice

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 78 / 113

Coverability Graph: Exercice

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 78 / 113

Coverability Graph: Another Exercice

T P2 T2

P1 T3 P3

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 79 /113

Coverability Graph: Another Exercice

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 79 /113

@ Formal Specifications

@ Linear Temporal Logic (LTL)

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 80 / 113

Temporal Logics

Two kinds of temporal operators J

@ sequence of expected events along one path
eeg U X G F

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 81 /113

Temporal Logics

Two kinds of temporal operators |

@ sequence of expected events along one path
eeg U X G F

Insufficient: are all/some paths starting from a given state satsfy
some property?

path quantifiers
@ quantify paths starting from a state and satisfying a property
ecg A E

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 81 /113

Linear Temporal Logic (LTL)

Syntax
AP: a set of atomic propositions
° ¢ = true | logical constant true

p | atomic proposition
- | negation
eNg| and
X | next time
Uy Until

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 82 /113

Linear Temporal Logic (LTL)

Syntax
AP: a set of atomic propositions
° ¢ = true | logical constant true

p | atomic proposition
- | negation
eNg| and
X | next time
Uy Until

Abreviations :

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 82 /113

Linear Temporal Logic (LTL)

Syntax
AP: a set of atomic propositions
° ¢ = true | logical constant true

p | atomic proposition
- | negation
eNg| and
X | next time
Uy Until

Abreviations :
0 p1 = P2 =1V 2

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 82 /113

Linear Temporal Logic (LTL)

Syntax
AP: a set of atomic propositions
° ¢ = true | logical constant true

p | atomic proposition
- | negation
eNg| and
X | next time
Uy Until

Abreviations :
° Y1 = P2="7p1V P
e Fyp: now or sometimes in the future
o Fp=true Uy

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 82 /113

Linear Temporal Logic (LTL)

Syntax
AP: a set of atomic propositions
° ¢ = true | logical constant true

p | atomic proposition
- | negation
eNg| and
X | next time
Uy Until

Abreviations :
Y1 = P2 =1V
e Fyp: now or sometimes in the future
o Fp=true Uy
e Gy: now and always in the future
o Gp=-F-yp

82 /113

EFREI 16-17 Formal Specification and Verification of Concurrent Systems

LTL: Semantics

Express sequence of events along a path)

Operator X "next"

(——O—O—0O-

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 83 /113

Temporal connectors

Express sequence of events along a path)

Operator U "p true until g true"

Cora > —()—C) —(D—(O—

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 84 /113

Temporal connectors

Express sequence of events along a path)

Operator G "always in the future"

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 85 / 113

Temporal connectors

Express sequence of events along a path)

Operator F "eventually in the future"

) —O—O—0O—-

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 86 / 113

LTL: Semantics

LTL is interpreted on infinite paths of a Kripke structure K.
T =5—S1—...
o ml=piff pe L(s)
TE @1 ANpiff =1 and 7 = @2
T piffnot =@
7 = Xy iff 7t |= ¢ (7 = suffix of 7 starting at s;)
ThE e Up iff3i>0st. 7 Ep,and VO<j < iAT = o

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 87 / 113

LTL: Semantics

LTL is interpreted on infinite paths of a Kripke structure K.
T =5—S1—...
o ml=piff pe L(s)
oeTE Vi Npiff =1 and m =
ok piffnot =
o 7= Xy iff 7 |= ¢ (7' = suffix of 7 starting at s;)
o mEiUp iff i >0st. ' Eprand VO < j<iA® =

KEp< Vpathmof K, m = ¢

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 87 / 113

LTL: Exercice

Ecrire les formules LTL formalisant les propriétés suivantes :

00

6 0 00 0000

One day, p will occur

p is always true

p occurs infinitely often

p and g are never true simultaneously

After an occurrence of p there will be at least one occurrence of g

If p1 occurs infinitely often and p» occurs inifnitely often, then each occurrence of g3 is
followed by an occurrence of q».

Before each occurrence of p, there is at least one occurrence of q.

Between each couple of occurrence of p there is at least one occurrence of g.

No other coffee orders are accepted between the payment of the amount due and the
removal of the cup.

If the machine accepts a card, it does not accept the other before having ejected the first
card.

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 88 / 113

LTL: Exercice

Ecrire les formules LTL formalisant les propriétés suivantes :

00

6 0 00 0000

One day, p will occur (Fp)

p is always true

p occurs infinitely often

p and g are never true simultaneously

After an occurrence of p there will be at least one occurrence of g

If p1 occurs infinitely often and p» occurs inifnitely often, then each occurrence of g3 is
followed by an occurrence of q».

Before each occurrence of p, there is at least one occurrence of q.

Between each couple of occurrence of p there is at least one occurrence of g.

No other coffee orders are accepted between the payment of the amount due and the
removal of the cup.

If the machine accepts a card, it does not accept the other before having ejected the first
card.

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 88 / 113

LTL: Exercice

Ecrire les formules LTL formalisant les propriétés suivantes :

00

6 0 00 0000

One day, p will occur (Fp)

p is always true (Gp)

p occurs infinitely often

p and g are never true simultaneously

After an occurrence of p there will be at least one occurrence of g

If p1 occurs infinitely often and p» occurs inifnitely often, then each occurrence of g3 is
followed by an occurrence of q».

Before each occurrence of p, there is at least one occurrence of q.

Between each couple of occurrence of p there is at least one occurrence of g.

No other coffee orders are accepted between the payment of the amount due and the
removal of the cup.

If the machine accepts a card, it does not accept the other before having ejected the first
card.

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 88 / 113

LTL: Exercice

Ecrire les formules LTL formalisant les propriétés suivantes :
@ One day, p will occur (Fp)
Q@ pis always true (Gp)
© p occurs infinitely often(GFp)
0 p and g are never true simultaneously
e After an occurrence of p there will be at least one occurrence of g

e If p1 occurs infinitely often and p» occurs inifnitely often, then each occurrence of g3 is
followed by an occurrence of q».

Before each occurrence of p, there is at least one occurrence of q.

Between each couple of occurrence of p there is at least one occurrence of g.

No other coffee orders are accepted between the payment of the amount due and the
removal of the cup.

6 0 00

If the machine accepts a card, it does not accept the other before having ejected the first
card.

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 88 / 113

LTL: Exercice

Ecrire les formules LTL formalisant les propriétés suivantes :
@ One day, p will occur (Fp)
Q@ pis always true (Gp)
© p occurs infinitely often(GFp)
@ bp and g are never true simultaneously (=F(p A q) ou encore G—(p A q))
e After an occurrence of p there will be at least one occurrence of g

e If p1 occurs infinitely often and p» occurs inifnitely often, then each occurrence of g3 is
followed by an occurrence of q».

Before each occurrence of p, there is at least one occurrence of q.

Between each couple of occurrence of p there is at least one occurrence of g.

No other coffee orders are accepted between the payment of the amount due and the
removal of the cup.

6 0 00

If the machine accepts a card, it does not accept the other before having ejected the first
card.

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 88 / 113

LTL: Exercice

Ecrire les formules LTL formalisant les propriétés suivantes :
@ One day, p will occur (Fp)
Q@ pis always true (Gp)
© p occurs infinitely often(GFp)
@ bp and g are never true simultaneously (=F(p A q) ou encore G—(p A q))
© After an occurrence of p there will be at least one occurrence of g (G(p = F q))

e If p1 occurs infinitely often and p» occurs inifnitely often, then each occurrence of g3 is
followed by an occurrence of q».

Before each occurrence of p, there is at least one occurrence of q.

Between each couple of occurrence of p there is at least one occurrence of g.

No other coffee orders are accepted between the payment of the amount due and the
removal of the cup.

6 0 00

If the machine accepts a card, it does not accept the other before having ejected the first
card.

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 88 / 113

LTL: Exercice

Ecrire les formules LTL formalisant les propriétés suivantes :
@ One day, p will occur (Fp)
Q@ pis always true (Gp)
© p occurs infinitely often(GFp)
@ bp and g are never true simultaneously (=F(p A q) ou encore G—(p A q))
© After an occurrence of p there will be at least one occurrence of g (G(p = F q))

e If p1 occurs infinitely often and p» occurs inifnitely often, then each occurrence of g3 is
followed by an occurrence of 2. ((GFp1 A GFP2) — G(q1 = Fq2))

Before each occurrence of p, there is at least one occurrence of q.

Between each couple of occurrence of p there is at least one occurrence of g.

No other coffee orders are accepted between the payment of the amount due and the
removal of the cup.

6 0 00

If the machine accepts a card, it does not accept the other before having ejected the first
card.

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 88 / 113

LTL: Exercice

Ecrire les formules LTL formalisant les propriétés suivantes :
@ One day, p will occur (Fp)
Q@ pis always true (Gp)
© p occurs infinitely often(GFp)
@ bp and g are never true simultaneously (=F(p A q) ou encore G—(p A q))
© After an occurrence of p there will be at least one occurrence of g (G(p = F q))

e If p1 occurs infinitely often and p» occurs inifnitely often, then each occurrence of g3 is
followed by an occurrence of 2. ((GFp1 A GFP2) — G(q1 = Fq2))

Before each occurrence of p, there is at least one occurrence of q. (G(—p) V (—p)Uq)

Between each couple of occurrence of p there is at least one occurrence of g.

No other coffee orders are accepted between the payment of the amount due and the
removal of the cup.

6 0 00

If the machine accepts a card, it does not accept the other before having ejected the first
card.

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 88 / 113

LTL: Exercice

Ecrire les formules LTL formalisant les propriétés suivantes :
@ One day, p will occur (Fp)
Q@ pis always true (Gp)
© p occurs infinitely often(GFp)
@ bp and g are never true simultaneously (=F(p A q) ou encore G—(p A q))
© After an occurrence of p there will be at least one occurrence of g (G(p = F q))

e If p1 occurs infinitely often and p» occurs inifnitely often, then each occurrence of g3 is
followed by an occurrence of 2. ((GFp1 A GFP2) — G(q1 = Fq2))

Before each occurrence of p, there is at least one occurrence of q. (G(—p) V (—p)Uq)

Between each couple of occurrence of p there is at least one occurrence of g.

(G(p = X (G=pV FpA((=p)Uq))))

No other coffee orders are accepted between the payment of the amount due and the
removal of the cup.

6 0 00

If the machine accepts a card, it does not accept the other before having ejected the first
card.

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 88 / 113

LTL: Exercice

Ecrire les formules LTL formalisant les propriétés suivantes :
@ One day, p will occur (Fp)
Q@ pis always true (Gp)
© p occurs infinitely often(GFp)
@ bp and g are never true simultaneously (=F(p A q) ou encore G—(p A q))
© After an occurrence of p there will be at least one occurrence of g (G(p = F q))

e If p1 occurs infinitely often and p» occurs inifnitely often, then each occurrence of g3 is
followed by an occurrence of 2. ((GFp1 A GFP2) — G(q1 = Fq2))

Before each occurrence of p, there is at least one occurrence of q. (G(—p) V (—p)Uq)

Between each couple of occurrence of p there is at least one occurrence of g.

(G(p = X (G=pV FpA((=p)Uq))))

No other coffee orders are accepted between the payment of the amount due and the
removal of the cup. (G(pay = (—orderUremove)))

6 0 00

If the machine accepts a card, it does not accept the other before having ejected the first
card.

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 88 / 113

LTL: Exercice

Ecrire les formules LTL formalisant les propriétés suivantes :
@ One day, p will occur (Fp)
Q@ pis always true (Gp)
© p occurs infinitely often(GFp)
@ bp and g are never true simultaneously (=F(p A q) ou encore G—(p A q))
© After an occurrence of p there will be at least one occurrence of g (G(p = F q))

e If p1 occurs infinitely often and p» occurs inifnitely often, then each occurrence of g3 is
followed by an occurrence of 2. ((GFp1 A GFP2) — G(q1 = Fq2))

Before each occurrence of p, there is at least one occurrence of q. (G(—p) V (—p)Uq)

Between each couple of occurrence of p there is at least one occurrence of g.

(G(p = X (G=pV FpA((=p)Uq))))

No other coffee orders are accepted between the payment of the amount due and the
removal of the cup. (G(pay = (—orderUremove)))

6 0 00

If the machine accepts a card, it does not accept the other before having ejected the first
card. (G(accept =—> X(—accept U eject)))

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 88 / 113

Does the property holds? counterexample?

G(start = F stop)

tu

closed

closed

cooking

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 89 / 113

Does the property holds? counterexample?

G(start = F stop) \/

t

closed

cooking

EFREI 16-17 Formal Specification and Verification of Concurrent Systems

89 / 113

Does the property holds? counterexample?

G F turn_off

tu

closed

closed

cooking

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 90 / 113

Does the property holds? counterexample?

G F turn_off \/(pu// push)®

tu

closed
cooking

EFREI 16-17 Formal Specification and Verification of Concurrent Systems

90 / 113

Does the property holds? counterexample?

G F (turn_off V push)

tu

closed

closed

cooking

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 91 / 113

Does the property holds? counterexample?

G F (turn_off V push) \/

tu

closed
cooking

EFREI 16-17 Formal Specification and Verification of Concurrent Systems

01 /113

Does the property holds? counterexample?

G False v F(turn_off V push)

tu

closed
cooking

EFREI 16-17 Formal Specification and Verification of Concurrent Systems

92 /113

Does the property holds? counterexample?

G False V F(turn_off \ push) \/

tu

closed
cooking

EFREI 16-17 Formal Specification and Verification of Concurrent Systems

92 /113

Does the property holds? counterexample?

G(start = (cook U F turn_off))

tu

closed

closed

cooking

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 93 /113

Does the property holds? counterexample?

G(start = (cook U F turn_off)) \/

tu

closed
cooking

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 93 /113

© LTL Model Checking
@ Biichi Automata
@ Automata-Theoretic Explicit LTL Model Checking

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 94 / 113

© LTL Model Checking
@ Biichi Automata

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 95 / 113

Biichi Automata

A Biichi automaton is 6-tuple A= (¥, Q, Qo, F,J) where:
@ X is a finite alphabet

Q is a finite set of state

F is a set of accepting states

o
o @ is a set of initial states
o
00 C Qx2"xQ.

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 96 / 113

Biichi Automata

A Biichi automaton is 6-tuple A= (¥, Q, Qo, F,J) where:
@ X is a finite alphabet

Q is a finite set of state

F is a set of accepting states

o
o @ is a set of initial states
o
00 C Qx2"xQ.

An infinite run is accepted by A iff it goes through states of F
infinitely often

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 96 / 113

Biichi Automata

A Biichi automaton is 6-tuple A= (¥, Q, Qo, F,J) where:
@ X is a finite alphabet

Q is a finite set of state

F is a set of accepting states
dC Q x2*x Q.

o
o @ is a set of initial states
o
o

An infinite run is accepted by A iff it goes through states of F
infinitely often

For any LTL formula ¢ there exists a Biichi automaton Q, s.t.
L(Asa) = L(SO)

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 96 / 113

Biichi Automata

A Biichi automaton is 6-tuple A= (¥, Q, Qo, F,J) where:
@ X is a finite alphabet

Q is a finite set of state

F is a set of accepting states
dC Q x2*x Q.

o
o @ is a set of initial states
o
o

An infinite run is accepted by A iff it goes through states of F
infinitely often

©

For any LTL formula ¢ there exists a Biichi automaton Q, s.t.
L(Ay) = L(y)
o Generalized Biichi Automata (State/Transition-Based)

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 96 / 113

From LTL to Blichi automata

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 97 / 113

From LTL to Blichi automata

p T

SO:FP Aap: —> P

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 98 / 113

From LTL to Blichi automata

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 99 / 113

From LTL to Blichi automata

p=aUb

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 100 / 113

From LTL to Blichi automata

ab T

p=aUb Ay —> b

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 100 / 113

From LTL to Blichi automata

p=G(p = Fq)

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 101 / 113

From LTL to Blichi automata

¢p=G(p = Fq)
pVq

pA—q
A=) 0

q

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 101 / 113

From LTL to Blichi automata

v=-G(p = Fq)

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 102 / 113

From LTL to Blichi automata

T q

v=-G(p = Fq) Ay —> Pa

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 102 / 113

© LTL Model Checking

o Automata-Theoretic Explicit LTL Model Checking

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 103 / 113

Automata-Theoretic Explicit LTL Model Checking

High-level
model M

7’ State-space
generation

State-space
automaton
Am

Product
Automaton

Synchronized

product
LA, ® Aum) = Emptiness check
ZL(A-)NZL(An)) \L(Aw@AM) <0

Z

N
egated M = o or

property au-
A counterexample
tomaton A-,

LTL
translation

LTL
property ¢

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 104 / 113

Automata-Theoretic Explicit LTL Model Checking

High-level
model M

7’ State-space
generation

State-space
automaton
Am

Product
Automaton
A, ® Am

Synchronized

product
LA, ® Aum) = Emptiness check
ZL(A-)NZL(An)) \L(Aw@AM) <0

Z

N
egated M = o or

property au-
A counterexample
tomaton A-,

LTL
translation

LTL
property ¢

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 104 / 113

Automata-Theoretic Explicit LTL Model Checking

High-level
model M

On-the-fly generation
of state-space automaton
Am

Product
Automaton
A, ® Am

Synchronized

product
LA, ® Aum) = Emptiness check
ZL(A-)NZL(An)) \L(Aw@AM) <0

B

N
egated M= o or

property au-
A counterexample
tomaton A-,

LTL
translation

LTL
property ¢

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 104 / 113

Automata-Theoretic Explicit LTL Model Checking

High-level
model M

On-the-fly generation
of state-space automaton

Am
On-the-fly
synchronized product
LA ® An) = Emptiness check
ZL(A-p) N Z(Aw) L(A-,®Au) =0
Negated g

M = ¢ or
counterexample

property au-
tomaton A-,

LTL
translation

LTL
property ¢

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 104 / 113

LTS x Biichi Automaton

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 105 / 113

LTS x Biichi Automaton

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 105 / 113

Kripke Srutcure x Biichi Automaton

ég_, abc %_} abc
5D 0w

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 106 / 113

Kripke Srutcure x Biichi Automaton

abc \‘abc abc abc

O .*
. @ 50 - »&3

abe abc
AW®AM
abc! y abc abc, abc

Dads toncs
qo, S2 qo, S1 a1, Se qi,s7

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 106 / 113

LTS x Bichi Automaton: Exercice

Let us demonstrate by model checking that G F turn off is not
satisfied

closed

tu

closed

closed

cooking

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 107 / 113

LTS x Bichi Automaton: Exercic

o Build a Biichi automaton with the same language as
—(G F turn_off).

o Let us start from the unnegated formula: G F turn off

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 108 / 113

LTS x Bichi Automaton: Exercic

G F turn_off

@ F
—turn off

@ off

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 109 / 113

LTS x Bichi Automaton: Exercic

—(G F turn_off)

| f

—turn off

@ :

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 110 / 113

LTS x Biichi Automaton

tu

—turn off

off

closed

cooking

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 111 / 113

LTS x Biichi Automaton

closed
cooking

B

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 112 / 113

Kripke Structure x Biichi Automaton: Exercice

Express (with LTL) and Check the three properties of the mutual
exclusion Petri net model

mo=p1+rmp+rqg+aq
m=p2+rg+aq

my =p3+rq+q

m3 = p3 + q2

myg = p3 + q2

ms = p1+rp+qz2

me = p1+rp+ g3

m7 = p2+q2

tp3

my ——» m3

tq1

EFREI 16-17 Formal Specification and Verification of Concurrent Systems 113 / 113

	Context
	Model Checking
	Formalisms and Notations
	Formal Specifications
	Petri nets
	Coverability Graph
	Linear Temporal Logic (LTL)

	LTL Model Checking
	Büchi Automata
	Automata-Theoretic Explicit LTL Model Checking

